Symbolic Solution to Complete Ordinary Differential Equations with Constant Coefficients

نویسندگان

  • Juan F. Navarro
  • Antonio Pérez-Carrió
چکیده

andApplied AnalysisHindawi Publishing Corporationhttp://www.hindawi.comVolume 2013 ISRNAppliedMathematicsHindawi Publishing Corporationhttp://www.hindawi.comVolume 2013Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013International Journal ofCombinatorics Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013Journal of Function Spacesand Applications InternationalJournal ofMathematics andMathematicalSciences Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013 ISRNGeometryHindawi Publishing Corporationhttp://www.hindawi.comVolume 2013Discrete Dynamics inNature and SocietyHindawi Publishing Corporationhttp://www.hindawi.comVolume 2013Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013Advances inMathematical Physics ISRNAlgebraHindawi Publishing Corporationhttp://www.hindawi.comVolume 2013ProbabilityandStatisticsJournal of Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013 ISRNMathematicalAnalysisHindawi Publishing Corporationhttp://www.hindawi.comVolume 2013Journal ofApplied Mathematics Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013Advances inDecisionSciences Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013 Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013Stochastic AnalysisInternational Journal ofHindawi Publishing Corporationhttp://www.hindawi.comVolume 2013The ScientificWorld Journal Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013ISRNDiscreteMathematicsHindawi Publishing Corporationhttp://www.hindawi.comDifferential EquationsInternational Journal of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on usage of Elzaki transform for the ordinary differential equations with non-constant ‎coefficients

Although Elzaki transform is stronger than Sumudu and Laplace transforms to solve the ordinary differential equations withnon-constant coefficients, but this method does not lead to finding the answer of some differential equations. In this paper, a method is introduced to find that a differential equation by Elzaki transform can be ‎solved?‎

متن کامل

Solution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs

Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

Solving Differential Equations by Parallel Laplace Method with Assured Accuracy

We produce a parallel algorithm realizing the Laplace transform method for the symbolic solving of differential equations. In this paper we consider systems of ordinary linear differential equations with constant coefficients, nonzero initial conditions and right-hand parts reduced to sums of exponents with polynomial coefficients.

متن کامل

Two-Dimensional Elasticity Solution for Arbitrarily Supported Axially Functionally Graded Beams

First time, an analytical two-dimensional (2D) elasticity solution for arbitrarily supported axially functionally graded (FG) beam is developed. Linear gradation of the material property along the axis of the beam is considered. Using the strain displacement and constitutive relations, governing partial differential equations (PDEs) is obtained by employing Ressiner mixed var...

متن کامل

Invariant functions for solving multiplicative discrete and continuous ordinary differential equations

In this paper, at first the elemantary and basic concepts of multiplicative discrete and continous differentian and integration introduced. Then for these kinds of differentiation invariant functions the general solution of discrete and continous multiplicative differential equations will be given. Finaly a vast class of difference equations with variable coefficients and nonlinear difference e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013